Rabu, 29 April 2015

Prinsip Ekuipartisi Energi

Prinsip Ekuipartisi Energi

Pada subbab A, Anda telah mempelajari hubungan antara variabel-variabel yang menyatakan keadaan suatu gas dalam ruangan tertutup. Untuk mengamati keadaan gas tersebut, dapat dilakukan dengan dua cara, yaitu cara makroskopis dan mikroskopis. Jika Anda mengamati keadaan suatu gas dalam ruang tertutup berdasarkan besaran-besaran yang dapat dilihat atau diukur secara langsung, Anda dikatakan melakukan pengamatan secara makroskopis. Namun, jika pengamatan yang Anda lakukan berdasarkan pada variabel atau besaran yang tidak dapat dilihat atau diukur secara langsung, Anda dikatakan melakukan pengamatan secara mikroskopis.
Pengamatan keadaan gas secara makroskopis telah Anda lakukan dan pelajari pada subbab A. Pada subbab B ini, Anda akan mempelajari keadaan gas yang diamati secara mikroskopis serta hubungan antara besaran makroskopis dan besaran mikroskopis.

1. Tinjauan Tekanan Secara Mikroskopis

Berdasarkan sifat-sifat gas ideal, Anda telah mengetahui bahwa setiap dinding ruang tempat gas berada, mendapat tekanan dari tumbukan partikel-partikel gas yang tersebar merata di dalam ruang tersebut. Cobalah Anda amati gerak satu partikel yang berada di dalam ruang berbentuk kubus dengan panjang rusuk kubus L. Massa partikel tersebut adalah m dan kecepatan partikel menurut arah sumbu-x dinyatakan sebagai vx (perhatikan Gambar 7).
Sebuah partikel bergerak dengan kecepatan vx dalam ruang berbentuk kubus berusuk L.
Gambar 6. Sebuah partikel bergerak dengan kecepatan vx dalam ruang berbentuk kubus berusuk L.
Jika partikel gas ideal tersebut menumbuk dinding ruang, tumbukan yang terjadi adalah tumbukan lenting sempurna. Oleh karena itu, jika kecepatan awal partikel saat menumbuk dinding A adalah +vx, kecepatan akhir partikel setelah terjadinya tumbukan dinyatakan sebagai - vx. Perubahan momentum (Dpx) yang dialami partikel adalah Dp= pakhir – pawal = -mvx - (mvx) = -2mvx.
Setelah menumbuk dinding A, partikel gas ideal tersebut menumbuk dinding B. Demikian seterusnya, partikel gas tersebut akan bergerak bolak-balik menumbuk dinding A dan dinding B. Dengan demikian, Anda dapat menghitung selang waktu antara dua tumbukan yang terjadi pada dinding A dengan persamaan :
Dt = 2L / vx                                        (1–15)
Pada saat partikel gas tersebut menumbuk dinding, partikel memberikan gaya sebesar Fx pada dinding. Pada pelajaran mengenai momentum, Anda telah mempelajari bahwa besarnya gaya yang terjadi pada peristiwa tumbukan sama dengan laju perubahan momentumnya (F = Dp / Dt). Dengan demikian, besar gaya Fx tersebut dapat diketahui sebagai berikut.
Fx = mvx2 / L                                    (1–16)
Jika di dalam ruang berbentuk kubus tersebut terdapat sejumlah N partikel gas, yang kecepatan rata-rata seluruh molekul gas tersebut dinyatakan dengan vx, gaya yang dialami dinding dinyatakan sebagai Ftotal. Dengan demikian, Persamaan (1–16) dapat dinyatakan menjadi :
      (1–17)
Anda dapat mencari besarnya tekanan (p) yang dilakukan oleh gaya total (Ftotal) yang dihasilkan oleh N partikel gas ideal tersebut pada dinding A.
p = Ftotal / A
Oleh karena luas dinding adalah perkalian antara dua panjang rusuk dinding tersebtu (A = L2  maka persamaan tekanan pada dinding dapat ditulis dengan :
 (1–18)
atau ;
pV = Nmvx2                           (1–19)
dengan: 
p = tekanan pada dinding, dan
V = volume ruang.
Dalam tinjauan tiga dimensi (tinjauan ruang), kecepatan rata-rata gerak partikel merupakan resultan dari tiga komponen arah kecepatan menurut sumbu-x (), sumbu-y (  ), dan sumbu-z (  ), yang besarnya sama. Oleh karena itu, dapat dituliskan  dengan    . Jika setiap komponen pada kedua ruas penamaan kecepatan tersebut dikuadratkan, dapat dituliskan :
sehingga diperoleh,
Dengan demikian, Persamaan (1–19) dapat diubah menjadi :
            (1–20)
atau
              (1–21)
dengan: 
N = banyaknya partikel gas,
m = massa 1 partikel gas,
v = kecepatan partikel gas, dan
V = volume gas.
Catatan Fisika :

Gelembung Udara
Penyelam
Penyelam. [3]
Ukuran gelembung udara di dalam air berubah seiring dengan berubahnya kedalam gelembung tersebut di dalam air. Jika seorang penyelam scuba melepaskan gelembung udara di kedalaman air, tekanan air di kedalam tersebut menentukan besarnya volume gelembung udara. Saat gelembung udara tersebut naik ke permukaan, tekanan air menurun sehingga volume gelembung udara pun membesar. (Sumber: Contemporary College Physics, 1993)

Tidak ada komentar:

Posting Komentar