Kamis, 12 Maret 2015

Problabilitas dan Hukum Kedua Termodinamika



Gagasan mengenai entropi dan ketidakteraturan diperjelas dengan menggunakan probabilistik keadaan molekul sistem. Pendekatan ini pertama kali dilakukan mendekati akhir abad kesembilan belas oleh Ludwig Boltzmann (1844-1906). Beliau membuat perbedaan keadaan molekul sistem. Perbedaan jelas antara “keadaan makro” dan “keadaan mikro” sebuah sistem. Keadaan mikro sistem akan dinyatakan ketika posisi dan kecepatan setiap partikel (atau molekul) diketahui. Keadaan makro sebuah sistem dinyatakan dengan memberikan sifat makroskopik sistem tersebut – temperatur, tekanan, jumlah mol, dan seterusnya. Pada kenyataannya, kita hanya dapat mengetahui keadaan makro sebuah sistem. Biasanya terdapat terlalu banyak molekul pada sebuah sistem untuk mengetahui kecepatan dan posisi masing-masing pada suatu saat tertentu. Penting untuk dikenali bahwa perbedaan besar dalam keadaan  mikro   dianggap sama dalam keadaan makro
Kita lihat contoh yang sederhana. Misalkan Anda secara berulang mengambil empat koin di tangan Anda dan menjatuhkannya di atas meja. Berapa banyak kepala dan ekor yang muncul pada satu lemparan koin sebagai keadaan makro dari sistem ini. Suatu pernyataan bahwa setiap koin sebagai kepala dan ekor berarti menyatakan keadaan mikro. Pada Tabel 2.1 kita lihat jumlah keadaan mikro yang berhubungan dengan setiap keadaan makro.
Tabel 2.1 Jumlah keadaan Mikro
Keadaan Makro Keadaan Mikro yang mungkin
(K = Kepala E = Ekor) Jmlh Kea-daan
Mikro

Asumsi dasar di balik pendekatan probabilitas ini bahwa setiap keadaan mikro mempunyai probabilitas yang sama. Dengan demikian jumlah keadaan mikro yang memberikan keadaan makro yang sama berhubungan dengan probabilitas relatif dari keadaan makro yang sedang terjadi. Keadaan makro dengan dua kepala dan dua ekor merupakan yang paling mungkin dalam kasus pelemparan empat koin ini; dari total 16 keadaan mikro yang mungkin, enam diantaranya sama dengan dua kepala dan dua ekor, sehingga probabilitas lemparan dua kepala dan dua ekor adalah 6 dari 16, ataua 25 persen. Probabilitas lemparan empat kepala hanya 1 dari 16, atau 16 persen. Tentu saja jika Anda melempar koin-koin tersebut 16 kali, Anda mungkin tidak mendapatkan bahwa dua kepala dan dua ekor muncul tepat 6 kali, atau kepala tepat empat kali. Angka-angka ini hanya merupakan probabilitas atau nilai rata-rata. Jika Anda melakukan 1600 lemparan, hampir 38 persen diantaranya berupa dua kepala dan dua ekor. Makin besar jumlah percobaan, makin dekat presentasi dengan probabilitas yang dihitung.
Jika kita mempertimbangkan melempar lebih banyak koin, katakanlah 100 pada saat yang sama, probabilitas relatif untuk melempar kepala seluruhnya (atau semua ekor) akan sangat berkurang. hanya ada satu keadaan mikro yang sama semua kepala. Untuk 99 kepala dan 1 ekor, ada 100 keadaan mikro karena setiap koin mungkin merupakan ekor tersebut. Probabilitas relatif untuk keadaan makro yang lain diberikan pada Tabel 2.2. Terdapat total sekitar 1030 keadaan makro yang mungkin. Dengan demikian probabilitas relatif yang mungkin untuk mendapatkan semua kepala adalah 1 dalam 1030, suatu hal yang kemungkinannya sangat kecil. Probabilitas mendapatkan 50 kepala dan 50 ekor (lihat Tabel 2.2) adalah 1,0 x 1029/1030 = 0,10. Probabilitas mendapatkan antara 45 dan 55 kepala adalah 0,90.
Tabel 2.2 Probabilitas Berbagai Keadaan Makro
untuk 100 Lemparan Koin


Dengan demikian kita lihat dengan bertambahnya jumlah koin, probabilitas mendapatkan susunan yang paling teratur (semua kepala atau semua ekor) menjadi sangat tidak mungkin. Susunan yang paling tidak teratur (setengah kepala, setengah ekor) merupakan yang paling mungkin dan probabilitas mendapatkan presentase tertentu (katakanlah, 5 persen) dari susunan yang paling mungkin bertambah besar dengan bertambahnya jumlah koin. Sebagai contoh, keadaan yang paling mungkin untuk gas (katakanlah, udara di dalam ruangan) merupakan keadaan dimana molekul-molekul mengambil tempat seluruh ruangan dan bergerak secara acak; hal ini berhubungan dengan distribusi Maxwell. Di pihak lain susunan yang sangat teratur dari semua molekul yang ditempatkan di satu sudut ruangan dan semuanya bergerak dengan laju yang sama sangat tidak mungkin.
Dalam probabilitas, hukum termodinamika kedua – yang memberitahu kita bahwa entropi bertambah pada semua proses – berubah ke pernyataan bahwa proses-proses yang terjadi adalah yang paling mungkin. Hukum kedua dengan demikian menjadi pernyataan sepele, bagaimanapun, sekarang ada elemen tambahan. Hukum kedua dalam hubungannya dengan probabilitasnya tidak melarang penurunan entropi, melainkan hanya menyatakan bahwa probabilitasnya sangat kecil. Bukanlah tidak mungkin bahwa garam dan merica akan secara spontan berpisah menjadi lapisan-lapisan lagi, atau sebuah cangkir yang pecah akan bersatu kembali.
Sebuah danau membeku pada hari musim panas yang panas (yaitu, kalor mengalir keluar dari danau yang dingin ke lingkungan yang lebih hangat). Akan tetapi probabilitas peristiwa-peristiwa tersebut terjadi sangat kecil. Pada contoh koin, penambahan jumlah koin dari 4 menjadi 100 memperkecil secara drastis probabilitas simpangan yang besar dari susunan rata-rata, yakni yang paling mungkin. Pada sistem-sistem biasa, kita tidak berhadapan dengan 100 molekul, tetapi dengan molekul yang jumlahnya sangat banyak; pada 1 mol terdapat 6 x 1023 molekul. Dengan demikian probabilitas simpangan yang jauh dari rata-rata sangatlah kecil.

Evolusi Biologis dan Pertumbuhan
Suatu contoh yang menarik dari penambahan entropi berhubungan dengan evolusi biologis dan pertumbuhan organisme. Jelas, seorang manusia merupakan organisme yang sanagt teratur. Proses evolusi dari makromolekul awal dan bentuk sederhana dari kehidupan sampai Homo sapiens merupakan proses keteraturan yang bertambah. Demikian juga perkembangan individu dari satu sel menjadi orang dewasa merupakan proses bertambahnya keteraturan. Apakah proses-proses ini melanggar hukum termodinamika kedua? Tidak, pada proses evolusi dan pertumbuhan, dan bahkan selama kehidupan orang dewasa, hasil pembuangan dieliminasi. Molekul-molekul kecil yang tetap sebagai hasil metabolisme ini merupakan molekul-molekul sederhana tersebut menyatakan ketidakteraturan yang relatif lebih tinggi atau entropi. Memang, entropi total molekul yang dihasilkan oleh organisme selama proses evolusi dan pertumbuhan lebih besar dibanding penurunan entropi yang berhubungan dengan keteraturan individu yang tumbuh atau spesies yang berkembang.
Aspek lainnya dari hukum termodinamika kedua adalah bahwa hukum tersebut memberitahu kita mengenai arah proses. Jika Anda melihat sebuah film yang diputar mundur, Anda akan bisa mengatakan bahwa film itu diputar mundur. Karena Anda akan melihat kejadian yang aneh, seperti cangkir kopi yang pecah naik dari lantai dan tersusun kembali di meja, atau balon yang pecah menjadi satu lagi dan terisi oleh udara. Kita tahu bahwa hal-hal ini tidak terjadi di kehidupan nyata; hal-hal ini merupakan proses-proses dimana keteraturan bertambah – atau entropi berkurang. Hal-hal ini melanggar hukum termodinamika kedua. Ketika menonton sebuah film (atau membayangkan bahwa waktu dapat berjalan mundur), kita diberi pertunjukan terbaliknya waktu dengan melihat apakah entropi bertambah atau berkurang. Itu sebabnya, entropi disebut panah waktu, karena bisa memberitahu kita mengenai arah berjalannya waktu.

Tidak ada komentar:

Posting Komentar